3D superconducting hollow nanowires with tailored diameters grown by focused He+ beam direct writing
Financiación H2020 / H2020 Funds
Resumen: Currently, the patterning of innovative three-dimensional (3D) nano-objects is required for the development of future advanced electronic components. Helium ion microscopy in combination with a precursor gas can be used for direct writing of three-dimensional nanostructures with a precise control of their geometry, and a significantly higher aspect ratio than other additive manufacturing technologies. We report here on the deposition of 3D hollow tungsten carbide nanowires with tailored diameters by tuning two key growth parameters, namely current and dose of the ion beam. Our results show the control of geometry in 3D hollow nanowires, with outer and inner diameters ranging from 36 to 142 nm and from 5 to 28 nm, respectively; and lengths from 0.5 to 8.9 mu m. Transmission electron microscopy experiments indicate that the nanowires have a microstructure of large grains with a crystalline structure compatible with the face-centered cubic WC1-x phase. In addition, 3D electron tomographic reconstructions show that the hollow center of the nanowires is present along the whole nanowire length. Moreover, these nanowires become superconducting at 6.8 K and show high values of critical magnetic field and critical current density. Consequently, these 3D nano-objects could be implemented as components in the next generation of electronics, such as nano-antennas and sensors, based on 3D superconducting architectures.
Idioma: Inglés
DOI: 10.3762/bjnano.11.104
Año: 2020
Publicado en: BEILSTEIN JOURNAL OF NANOTECHNOLOGY 11 (2020), 1198-1206
ISSN: 2190-4286

Factor impacto JCR: 3.649 (2020)
Categ. JCR: MATERIALS SCIENCE, MULTIDISCIPLINARY rank: 149 / 333 = 0.447 (2020) - Q2 - T2
Categ. JCR: PHYSICS, APPLIED rank: 49 / 160 = 0.306 (2020) - Q2 - T1
Categ. JCR: NANOSCIENCE & NANOTECHNOLOGY rank: 61 / 106 = 0.575 (2020) - Q3 - T2

Factor impacto SCIMAGO: 0.72 - Electrical and Electronic Engineering (Q1) - Physics and Astronomy (miscellaneous) (Q1) - Nanoscience and Nanotechnology (Q1) - Materials Science (miscellaneous) (Q1)

Financiación: info:eu-repo/grantAgreement/EUR/COST-Action/CA16218
Financiación: info:eu-repo/grantAgreement/ES/DGA-FEDER/Construyendo Europa desde Aragón
Financiación: info:eu-repo/grantAgreement/ES/DGA-FEDER/E13-20R
Financiación: info:eu-repo/grantAgreement/ES/DGA-FEDER/E28-17R
Financiación: info:eu-repo/grantAgreement/EC/H2020/654360/EU/NANOSCIENCE FOUNDRIES AND FINE ANALYSIS - EUROPE/NFFA-Europe
Financiación: info:eu-repo/grantAgreement/EC/H2020/679080/EU/Using extreme magnetic field microscopy to visualize correlated electron materials/PNICTEYES
Financiación: info:eu-repo/grantAgreement/ES/MDM/CEX2018-000805-M
Financiación: info:eu-repo/grantAgreement/ES/MINECO-FEDER/MAT2017-82970-C2-R
Financiación: info:eu-repo/grantAgreement/ES/MINECO-FEDER/PIE201760E027
Financiación: info:eu-repo/grantAgreement/ES/MINECO/FIS2017-84330-R
Tipo y forma: Article (Published version)
Área (Departamento): Área Física Materia Condensada (Dpto. Física Materia Condensa.)
Exportado de SIDERAL (2021-09-02-09:53:05)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
articulos



 Notice créée le 2020-10-20, modifiée le 2021-09-02


Versión publicada:
 PDF
Évaluer ce document:

Rate this document:
1
2
3
 
(Pas encore évalué)