Triangular curves and cyclotomic Zariski tuples
Resumen: The purpose of this paper is to exhibit infinite families of conjugate projective curves in a number field whose complement have the same abelian fundamental group, but are non-homeomorphic. In particular, for any d=4 we find Zariski (¿d2¿+1)-tuples parametrized by the d-roots of unity up to complex conjugation. As a consequence, for any divisor m of d, m¿1,2,3,4,6, we find arithmetic Zariski ¿(m)2-tuples with coefficients in the corresponding cyclotomic field. These curves have abelian fundamental group and they are distinguished using a linking invariant.
Idioma: Inglés
DOI: 10.1007/s13348-019-00269-y
Año: 2020
Publicado en: Collectanea Mathematica 71, 3 (2020), 427–441
ISSN: 0010-0757

Factor impacto JCR: 0.873 (2020)
Categ. JCR: MATHEMATICS rank: 181 / 330 = 0.548 (2020) - Q3 - T2
Categ. JCR: MATHEMATICS, APPLIED rank: 207 / 265 = 0.781 (2020) - Q4 - T3

Factor impacto SCIMAGO: 0.714 - Mathematics (miscellaneous) (Q2) - Applied Mathematics (Q2)

Financiación: info:eu-repo/grantAgreement/ES/DGA/E22-17R
Financiación: info:eu-repo/grantAgreement/ES/MICINN/MTM2016-76868-C2-2-P
Tipo y forma: Artículo (PostPrint)
Área (Departamento): Área Geometría y Topología (Dpto. Matemáticas)

Derechos Reservados Derechos reservados por el editor de la revista


Exportado de SIDERAL (2022-04-05-14:35:59)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Artículos



 Registro creado el 2020-11-13, última modificación el 2022-04-05


Postprint:
 PDF
Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)