Fast Synthetic Dataset for Kitchen Object Segmentation in Deep Learning
Resumen: Object recognition has been widely investigated in computer vision for many years. Currently, this process is carried out through neural networks, but there are very few public datasets available with mask and class labels of the objects for the training process in usual applications. In this paper, we address the problem of fast generation of synthetic datasets to train neural models because creating a handcraft labeled dataset with object segmentation is a very tedious and time-consuming task. We propose an efficient method to generate a synthetic labeled dataset that adequately combines background images with foreground segmented objects. The synthetic images can be created automatically with random positioning of the objects or, alternatively, the method can produce realistic images by keeping the realism in the scales and positions of the objects. Then, we employ Mask-RCNN deep learning model, to detect and segment classes of kitchen objects using images. In the experimental evaluation, we study both synthetic datasets, automatic or realistic, and we compare the results. We analyze the performance with the most widely used indexes and check that the realistic synthetic dataset, quickly created through our method, can provide competitive results and accurately classify the different objects.
Idioma: Inglés
DOI: 10.1109/ACCESS.2020.3043256
Año: 2020
Publicado en: IEEE Access 8 (2020), 220496-220506
ISSN: 2169-3536

Factor impacto JCR: 3.367 (2020)
Categ. JCR: COMPUTER SCIENCE, INFORMATION SYSTEMS rank: 65 / 162 = 0.401 (2020) - Q2 - T2
Categ. JCR: TELECOMMUNICATIONS rank: 36 / 91 = 0.396 (2020) - Q2 - T2
Categ. JCR: ENGINEERING, ELECTRICAL & ELECTRONIC rank: 94 / 273 = 0.344 (2020) - Q2 - T2

Factor impacto SCIMAGO: 0.586 - Computer Science (miscellaneous) (Q1) - Materials Science (miscellaneous) (Q1) - Engineering (miscellaneous) (Q1)

Financiación: info:eu-repo/grantAgreement/ES/MICINN-AEI-FEDER/RTC-2017-5965-6
Tipo y forma: Artículo (Versión definitiva)
Área (Departamento): Área Ingen.Sistemas y Automát. (Dpto. Informát.Ingenie.Sistms.)

Creative Commons Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace. No puede utilizar el material para una finalidad comercial. Si remezcla, transforma o crea a partir del material, no puede difundir el material modificado.


Exportado de SIDERAL (2021-12-16-13:05:14)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Artículos > Artículos por área > Máster Universitario en Ingeniería de Sistemas y Automática



 Registro creado el 2021-02-18, última modificación el 2021-12-16


Versión publicada:
 PDF
Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)