Fast Synthetic Dataset for Kitchen Object Segmentation in Deep Learning
Resumen: Object recognition has been widely investigated in computer vision for many years. Currently, this process is carried out through neural networks, but there are very few public datasets available with mask and class labels of the objects for the training process in usual applications. In this paper, we address the problem of fast generation of synthetic datasets to train neural models because creating a handcraft labeled dataset with object segmentation is a very tedious and time-consuming task. We propose an efficient method to generate a synthetic labeled dataset that adequately combines background images with foreground segmented objects. The synthetic images can be created automatically with random positioning of the objects or, alternatively, the method can produce realistic images by keeping the realism in the scales and positions of the objects. Then, we employ Mask-RCNN deep learning model, to detect and segment classes of kitchen objects using images. In the experimental evaluation, we study both synthetic datasets, automatic or realistic, and we compare the results. We analyze the performance with the most widely used indexes and check that the realistic synthetic dataset, quickly created through our method, can provide competitive results and accurately classify the different objects.
Idioma: Inglés
DOI: 10.1109/ACCESS.2020.3043256
Año: 2020
Publicado en: IEEE Access 8 (2020), 220496-220506
ISSN: 2169-3536

Factor impacto JCR: 3.367 (2020)
Categ. JCR: COMPUTER SCIENCE, INFORMATION SYSTEMS rank: 65 / 162 = 0.401 (2020) - Q2 - T2
Categ. JCR: TELECOMMUNICATIONS rank: 36 / 91 = 0.396 (2020) - Q2 - T2
Categ. JCR: ENGINEERING, ELECTRICAL & ELECTRONIC rank: 94 / 273 = 0.344 (2020) - Q2 - T2

Factor impacto SCIMAGO: 0.586 - Computer Science (miscellaneous) (Q1) - Materials Science (miscellaneous) (Q1) - Engineering (miscellaneous) (Q1)

Financiación: info:eu-repo/grantAgreement/ES/MICINN-AEI-FEDER/RTC-2017-5965-6
Tipo y forma: Article (Published version)
Área (Departamento): Área Ingen.Sistemas y Automát. (Dpto. Informát.Ingenie.Sistms.)
Exportado de SIDERAL (2021-12-16-13:05:14)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
articulos > articulos-por-area > ingenieria_de_sistemas_y_automatica



 Notice créée le 2021-02-18, modifiée le 2021-12-16


Versión publicada:
 PDF
Évaluer ce document:

Rate this document:
1
2
3
 
(Pas encore évalué)