Incremental dynamic mode decomposition: A reduced-model learner operating at the low-data limit
Resumen: The present work aims at proposing a new methodology for learning reduced models from a small amount of data. It is based on the fact that discrete models, or their transfer function counterparts, have a low rank and then they can be expressed very efficiently using few terms of a tensor decomposition. An efficient procedure is proposed as well as a way for extending it to nonlinear settings while keeping limited the impact of data noise. The proposed methodology is then validated by considering a nonlinear elastic problem and constructing the model relating tractions and displacements at the observation points.
Idioma: Inglés
DOI: 10.1016/j.crme.2019.11.003
Año: 2019
Publicado en: COMPTES RENDUS MECANIQUE 347, 11 (2019), 780-792
ISSN: 1631-0721

Factor impacto JCR: 1.509 (2019)
Categ. JCR: MECHANICS rank: 95 / 136 = 0.699 (2019) - Q3 - T3
Factor impacto SCIMAGO: 0.466 - Mechanics of Materials (Q2) - Materials Science (miscellaneous) (Q2)

Financiación: info:eu-repo/grantAgreement/ES/DGA-FSE/T88
Financiación: info:eu-repo/grantAgreement/ES/MINECO/DPI2017-85139-C2-1-R
Tipo y forma: Article (Published version)
Área (Departamento): Área Mec.Med.Cont. y Teor.Est. (Dpto. Ingeniería Mecánica)

Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. You may not use the material for commercial purposes. If you remix, transform, or build upon the material, you may not distribute the modified material.


Exportado de SIDERAL (2021-02-23-19:03:14)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles



 Record created 2021-02-23, last modified 2021-02-23


Versión publicada:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)