Incremental dynamic mode decomposition: A reduced-model learner operating at the low-data limit
Resumen: The present work aims at proposing a new methodology for learning reduced models from a small amount of data. It is based on the fact that discrete models, or their transfer function counterparts, have a low rank and then they can be expressed very efficiently using few terms of a tensor decomposition. An efficient procedure is proposed as well as a way for extending it to nonlinear settings while keeping limited the impact of data noise. The proposed methodology is then validated by considering a nonlinear elastic problem and constructing the model relating tractions and displacements at the observation points.
Idioma: Inglés
DOI: 10.1016/j.crme.2019.11.003
Año: 2019
Publicado en: COMPTES RENDUS MECANIQUE 347, 11 (2019), 780-792
ISSN: 1631-0721

Factor impacto JCR: 1.509 (2019)
Categ. JCR: MECHANICS rank: 95 / 136 = 0.699 (2019) - Q3 - T3
Factor impacto SCIMAGO: 0.466 - Mechanics of Materials (Q2) - Materials Science (miscellaneous) (Q2)

Financiación: info:eu-repo/grantAgreement/ES/DGA-FSE/T88
Financiación: info:eu-repo/grantAgreement/ES/MINECO/DPI2017-85139-C2-1-R
Tipo y forma: Article (Published version)
Área (Departamento): Área Mec.Med.Cont. y Teor.Est. (Dpto. Ingeniería Mecánica)
Exportado de SIDERAL (2021-02-23-19:03:14)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
articulos > articulos-por-area > mec._de_medios_continuos_y_teor._de_estructuras



 Notice créée le 2021-02-23, modifiée le 2021-02-23


Versión publicada:
 PDF
Évaluer ce document:

Rate this document:
1
2
3
 
(Pas encore évalué)