Numerical experiments on unsupervised manifold learning applied to mechanical modeling of materials and structures
Resumen: The present work aims at analyzing issues related to the data manifold dimensionality. The interest of the study is twofold: (i) first, when too many measurable variables are considered, manifold learning is expected to extract useless variables; (ii) second, and more important, the same technique, manifold learning, could be utilized for identifying the necessity of employing latent extra variables able to recover single-valued outputs. Both aspects are discussed in the modeling of materials and structural systems by using unsupervised manifold learning strategies.
Idioma: Inglés
DOI: 10.5802/CRMECA.53
Año: 2021
Publicado en: COMPTES RENDUS MECANIQUE 348, 10-11 (2021), 937-958
ISSN: 1631-0721

Factor impacto JCR: 1.437 (2021)
Categ. JCR: MECHANICS rank: 115 / 138 = 0.833 (2021) - Q4 - T3
Factor impacto CITESCORE: 3.8 - Materials Science (Q2) - Engineering (Q2)

Factor impacto SCIMAGO: 0.499 - Mechanics of Materials (Q2) - Materials Science (miscellaneous) (Q2)

Financiación: info:eu-repo/grantAgreement/ES/UZ/ESI Group Chair
Tipo y forma: Article (Published version)
Área (Departamento): Área Mec.Med.Cont. y Teor.Est. (Dpto. Ingeniería Mecánica)

Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.


Exportado de SIDERAL (2023-05-18-13:48:00)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles



 Record created 2021-03-09, last modified 2023-05-19


Versión publicada:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)