On Hardy kernels as reproducing kernels
Resumen: Hardy kernels are a useful tool to define integral operators on Hilbertian spaces like L2 (R+) or H2 (C+). These kernels entail an algebraic L1-structure which is used in this work to study the range spaces of those operators as reproducing kernel Hilbert spaces. We obtain their reproducing kernels, which in the H2 (R+) case turn out to be Hardy kernels as well. In the H2 (C+) scenario, the reproducing kernels are given by holomorphic extensions of Hardy kernels. Other results presented here are theorems of Paley-Wiener type, and a connection with one-sided Hilbert transforms.
Idioma: Inglés
DOI: 10.4153/S0008439522000406
Año: 2023
Publicado en: Canadian Mathematical Bulletin 66, 2 (2023), 428-442
ISSN: 0008-4395

Factor impacto JCR: 0.5 (2023)
Categ. JCR: MATHEMATICS rank: 326 / 490 = 0.665 (2023) - Q3 - T3
Factor impacto CITESCORE: 1.3 - Mathematics (all) (Q3)

Factor impacto SCIMAGO: 0.472 - Mathematics (miscellaneous) (Q2)

Financiación: info:eu-repo/grantAgreement/ES/MICINN PID2019-105979GB-I00
Financiación: info:eu-repo/grantAgreement/ES/MINECO/BES-2017-081552
Tipo y forma: Article (Published version)
Área (Departamento): Área Análisis Matemático (Dpto. Matemáticas)

Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. You may not use the material for commercial purposes. If you remix, transform, or build upon the material, you may not distribute the modified material.


Exportado de SIDERAL (2024-11-22-11:58:07)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles > Artículos por área > Análisis Matemático



 Record created 2022-10-20, last modified 2024-11-25


Versión publicada:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)