On Hardy kernels as reproducing kernels
Resumen: Hardy kernels are a useful tool to define integral operators on Hilbertian spaces like L2 (R+) or H2 (C+). These kernels entail an algebraic L1-structure which is used in this work to study the range spaces of those operators as reproducing kernel Hilbert spaces. We obtain their reproducing kernels, which in the H2 (R+) case turn out to be Hardy kernels as well. In the H2 (C+) scenario, the reproducing kernels are given by holomorphic extensions of Hardy kernels. Other results presented here are theorems of Paley-Wiener type, and a connection with one-sided Hilbert transforms.
Idioma: Inglés
DOI: 10.4153/S0008439522000406
Año: 2023
Publicado en: Canadian Mathematical Bulletin 66, 2 (2023), 428-442
ISSN: 0008-4395

Factor impacto JCR: 0.5 (2023)
Categ. JCR: MATHEMATICS rank: 326 / 490 = 0.665 (2023) - Q3 - T3
Factor impacto CITESCORE: 1.3 - Mathematics (all) (Q3)

Factor impacto SCIMAGO: 0.472 - Mathematics (miscellaneous) (Q2)

Financiación: info:eu-repo/grantAgreement/ES/MICINN PID2019-105979GB-I00
Financiación: info:eu-repo/grantAgreement/ES/MINECO/BES-2017-081552
Tipo y forma: Article (Published version)
Área (Departamento): Área Análisis Matemático (Dpto. Matemáticas)
Exportado de SIDERAL (2024-11-22-11:58:07)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
articulos > articulos-por-area > analisis_matematico



 Notice créée le 2022-10-20, modifiée le 2024-11-25


Versión publicada:
 PDF
Évaluer ce document:

Rate this document:
1
2
3
 
(Pas encore évalué)