Minimal rings related to generalized quaternion rings
Resumen: The family of rings of the form Z4 〈x, y〉〈x2 − a, y2 − b, yx − xy − 2(c + dx + ey + f xy)〉 is investigated which contains the generalized Hamilton quaternions over Z4. These rings are local rings of order 256. This family has 256 rings contained in 88 distinct isomorphism classes. Of the 88 non-isomorphic rings, 10 are minimal reversible nonsymmetric rings and 21 are minimal abelian reflexive nonsemicommutative rings. Few such examples have been identified in the literature thus far. The computational methods used to identify the isomorphism classes are also highlighted. Finally, some generalized Hamilton quaternion rings over Zps are characterized.
Idioma: Inglés
DOI: 10.24330/ieja.1281705
Año: 2023
Publicado en: International Electronic Journal of Algebra 34 (2023), [24 pp.]
ISSN: 1306-6048

Factor impacto CITESCORE: 0.9 - Algebra and Number Theory (Q3)

Factor impacto SCIMAGO: 0.318 - Algebra and Number Theory (Q3)

Tipo y forma: Article (Published version)
Área (Departamento): Área Didáctica Matemática (Dpto. Matemáticas)

Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.


Exportado de SIDERAL (2024-07-31-09:44:29)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles > Artículos por área > Didáctica de la Matemática



 Record created 2023-04-20, last modified 2024-07-31


Versión publicada:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)