Resumen: We study the intrinsic geometrical structure of hypersurfaces in 6-manifolds carrying a balanced Hermitian SU(3)-structure, which we call balanced SU(2)-structure. We provide sufficient conditions, in terms of suitable evolution equations, which imply that a 5-manifold with such structure can be isometrically embedded as a hypersurface in a balanced Hermitian SU(3)-manifold. Any 5-dimensional compact nilmanifold has an invariant balanced SU(2)-structure, and we show how some of them can be evolved to give new explicit examples of balanced Hermitian SU(3)-structures. Moreover, for n = 3, 4, we present examples of compact solvmanifolds endowed with a balanced SU(n)-structure such that the corresponding Bismut connection has holonomy equal to SU(n). Idioma: Inglés Año: 2009 Publicado en: JOURNAL OF MATHEMATICAL PHYSICS 50, 3 (2009), 033507 ISSN: 0022-2488 Factor impacto JCR: 1.318 (2009) Categ. JCR: PHYSICS, MATHEMATICAL rank: 24 / 47 = 0.511 (2009) - Q3 - T2 Tipo y forma: Artículo (PostPrint) Área (Departamento): Área Geometría y Topología (Dpto. Matemáticas) Área (Departamento): Área Didáctica Matemática (Dpto. Matemáticas)