Balanced Hermitian Metrics from SU(2)-Structures

Fernandez, M. ; Tomassini,A. ; Ugarte,L. (Universidad de Zaragoza) ; Villacampa,R. (Universidad de Zaragoza)
Balanced Hermitian Metrics from SU(2)-Structures
Resumen: We study the intrinsic geometrical structure of hypersurfaces in 6-manifolds carrying a balanced Hermitian SU(3)-structure, which we call balanced SU(2)-structure. We provide sufficient conditions, in terms of suitable evolution equations, which imply that a 5-manifold with such structure can be isometrically embedded as a hypersurface in a balanced Hermitian SU(3)-manifold. Any 5-dimensional compact nilmanifold has an invariant balanced SU(2)-structure, and we show how some of them can be evolved to give new explicit examples of balanced Hermitian SU(3)-structures. Moreover, for n = 3, 4, we present examples of compact solvmanifolds endowed with a balanced SU(n)-structure such that the corresponding Bismut connection has holonomy equal to SU(n).
Idioma: Inglés
Año: 2009
Publicado en: JOURNAL OF MATHEMATICAL PHYSICS 50, 3 (2009), 033507
ISSN: 0022-2488

Factor impacto JCR: 1.318 (2009)
Categ. JCR: PHYSICS, MATHEMATICAL rank: 24 / 47 = 0.511 (2009) - Q3 - T2
Tipo y forma: Article (PostPrint)
Área (Departamento): Área Geometría y Topología (Dpto. Matemáticas)
Área (Departamento): Área Didáctica Matemática (Dpto. Matemáticas)


Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. You may not use the material for commercial purposes. If you remix, transform, or build upon the material, you may not distribute the modified material.


Exportado de SIDERAL (2024-02-02-14:50:08)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles > Artículos por área > Didáctica de la Matemática



 Record created 2024-02-02, last modified 2024-02-02


Postprint:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)