Linearization of holomorphic Lipschitz functions
Resumen: Let X and Y complex Banach spaces with denoting the open unit ball of . This paper studies various aspects of the holomorphic Lipschitz space , endowed with the Lipschitz norm. This space consists of the functions in the intersection of the sets of Lipschitz mappings and of bounded holomorphic mappings, from to . Thanks to the Dixmier–Ng theorem, is indeed a dual space, whose predual shares linearization properties with both the Lipschitz‐free space and Dineen–Mujica predual of . We explore the similarities and differences between these spaces, and combine techniques to study the properties of the space of holomorphic Lipschitz functions. In particular, we get that contains a 1‐complemented subspace isometric to and that has the (metric) approximation property whenever has it. We also analyze when is a subspace of , and we obtain an analog of Godefroy's characterization of functionals with a unique norm preserving extension in the holomorphic Lipschitz context.
Idioma: Inglés
DOI: 10.1002/mana.202300527
Año: 2024
Publicado en: Mathematische Nachrichten 297, 8 (2024), 3024-3051
ISSN: 0025-584X

Financiación: info:eu-repo/grantAgreement/ES/DGA/E48-20R
Financiación: info:eu-repo/grantAgreement/ES/MICINN-AEI-FEDER/PID2021-122126NB-C32
Financiación: info:eu-repo/grantAgreement/ES/MICINN-AEI-FEDER/PID2021-122126NB-C33
Financiación: info:eu-repo/grantAgreement/ES/MCINN/PID2022-137294NB-I00
Tipo y forma: Article (Published version)
Área (Departamento): Área Análisis Matemático (Dpto. Matemáticas)

Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.


Exportado de SIDERAL (2024-08-29-11:26:06)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles > Artículos por área > Análisis Matemático



 Record created 2024-05-22, last modified 2024-08-29


Versión publicada:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)