Duality for Poincaré series of surfaces and delta invariant of curves
Resumen: In this article we study the delta invariant of reduced curve germs via topological techniques. We describe an explicit connection between the delta invariant of a curve embedded in a rational singularity and the topological Poincaré series of the ambient surface. This connection is established by using another formula expressing the delta invariant as ‘periodic constants’ of the Poincaré series associated with the abstract curve and a ‘twisted’ duality developed for the Poincaré series of the ambient space.
Idioma: Inglés
DOI: 10.1007/s40687-024-00457-8
Año: 2024
Publicado en: Research in Mathematical Sciences 11, 3 (2024), 47 [18 pp.]
ISSN: 2522-0144

Factor impacto JCR: 1.2 (2024)
Categ. JCR: MATHEMATICS rank: 84 / 483 = 0.174 (2024) - Q1 - T1
Factor impacto SCIMAGO: 0.956 - Applied Mathematics (Q1) - Theoretical Computer Science (Q1) - Mathematics (miscellaneous) (Q1) - Computational Mathematics (Q1)

Financiación: info:eu-repo/grantAgreement/ES/DGA/E22-20R
Financiación: info:eu-repo/grantAgreement/ES/MICINN/PID2020-114750GB-C31/AEI/10.13039/501100011033
Financiación: info:eu-repo/grantAgreement/ES/MICINN/RYC2021-034300-I
Tipo y forma: Article (Published version)
Área (Departamento): Área Geometría y Topología (Dpto. Matemáticas)

Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.


Exportado de SIDERAL (2025-09-22-14:40:49)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles



 Record created 2024-08-29, last modified 2025-09-23


Versión publicada:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)