Duality for Poincaré series of surfaces and delta invariant of curves
Resumen: In this article we study the delta invariant of reduced curve germs via topological techniques. We describe an explicit connection between the delta invariant of a curve embedded in a rational singularity and the topological Poincaré series of the ambient surface. This connection is established by using another formula expressing the delta invariant as ‘periodic constants’ of the Poincaré series associated with the abstract curve and a ‘twisted’ duality developed for the Poincaré series of the ambient space.
Idioma: Inglés
DOI: 10.1007/s40687-024-00457-8
Año: 2024
Publicado en: Research in Mathematical Sciences 11, 3 (2024), 47 [18 pp.]
ISSN: 2522-0144

Factor impacto JCR: 1.2 (2024)
Categ. JCR: MATHEMATICS rank: 84 / 483 = 0.174 (2024) - Q1 - T1
Factor impacto SCIMAGO: 0.956 - Applied Mathematics (Q1) - Theoretical Computer Science (Q1) - Mathematics (miscellaneous) (Q1) - Computational Mathematics (Q1)

Financiación: info:eu-repo/grantAgreement/ES/DGA/E22-20R
Financiación: info:eu-repo/grantAgreement/ES/MICINN/PID2020-114750GB-C31/AEI/10.13039/501100011033
Financiación: info:eu-repo/grantAgreement/ES/MICINN/RYC2021-034300-I
Tipo y forma: Article (Published version)
Área (Departamento): Área Geometría y Topología (Dpto. Matemáticas)
Exportado de SIDERAL (2025-09-22-14:40:49)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
articulos



 Notice créée le 2024-08-29, modifiée le 2025-09-23


Versión publicada:
 PDF
Évaluer ce document:

Rate this document:
1
2
3
 
(Pas encore évalué)