Quantum alpha-fractal approximation
Resumen: Fractal approximation is a well studied concept, but the convergence of all the existing fractal approximants towards the original function follows usually if the magnitude of the corresponding scaling factors approaches zero. In this article, for a given functionf is an element of C(I), by exploiting fractal approximation theory and considering the classicalq-Bernstein polynomials asbase functions, we construct a sequence{fn(q, alpha)(x)}n=1 infinity of(q, alpha)-fractal functions that converges uniformly tofeven if the norm/magnitude of the scaling functions/scaling factors does not tend to zero. The convergence of the sequence{fn(q, alpha)(x)}n=1 infinity of(q, alpha)-fractal functions towardsffollows from the convergence of the sequence ofq-Bernstein polynomials offtowardsf. If we consider a sequence{fm(x)}m=1 infinity of positive functions on a compact real interval that converges uniformly to a functionf, we develop a double sequence{{fm, n(q, alpha)(x)}n=1 infinity}m=1 infinity of(q, alpha)-fractal functions that converges uniformly tof.
Idioma: Inglés
DOI: 10.1080/00207160.2020.1792449
Año: 2021
Publicado en: International journal of computer mathematics 98, 12 (2021), 2355-2368
ISSN: 0020-7160

Factor impacto JCR: 1.75 (2021)
Categ. JCR: MATHEMATICS, APPLIED rank: 99 / 267 = 0.371 (2021) - Q2 - T2
Factor impacto CITESCORE: 3.4 - Mathematics (Q1) - Computer Science (Q2)

Factor impacto SCIMAGO: 0.519 - Computer Science Applications (Q2) - Applied Mathematics (Q2)

Tipo y forma: Article (PostPrint)
Área (Departamento): Área Matemática Aplicada (Dpto. Matemática Aplicada)

Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. You may not use the material for commercial purposes. If you remix, transform, or build upon the material, you may not distribute the modified material.


Exportado de SIDERAL (2025-01-20-14:53:05)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles > Artículos por área > Matemática Aplicada



 Record created 2025-01-20, last modified 2025-01-20


Postprint:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)