Resumen: Fractal approximation is a well studied concept, but the convergence of all the existing fractal approximants towards the original function follows usually if the magnitude of the corresponding scaling factors approaches zero. In this article, for a given functionf is an element of C(I), by exploiting fractal approximation theory and considering the classicalq-Bernstein polynomials asbase functions, we construct a sequence{fn(q, alpha)(x)}n=1 infinity of(q, alpha)-fractal functions that converges uniformly tofeven if the norm/magnitude of the scaling functions/scaling factors does not tend to zero. The convergence of the sequence{fn(q, alpha)(x)}n=1 infinity of(q, alpha)-fractal functions towardsffollows from the convergence of the sequence ofq-Bernstein polynomials offtowardsf. If we consider a sequence{fm(x)}m=1 infinity of positive functions on a compact real interval that converges uniformly to a functionf, we develop a double sequence{{fm, n(q, alpha)(x)}n=1 infinity}m=1 infinity of(q, alpha)-fractal functions that converges uniformly tof. Idioma: Inglés DOI: 10.1080/00207160.2020.1792449 Año: 2021 Publicado en: International journal of computer mathematics 98, 12 (2021), 2355-2368 ISSN: 0020-7160 Factor impacto JCR: 1.75 (2021) Categ. JCR: MATHEMATICS, APPLIED rank: 99 / 267 = 0.371 (2021) - Q2 - T2 Factor impacto CITESCORE: 3.4 - Mathematics (Q1) - Computer Science (Q2)