Universality arising from invertible weighted composition operators
Resumen: A linear operator U acting boundedly on an infinite-dimensional separable complex Hilbert space H is universal if every linear bounded operator acting on H is similar to a scalar multiple of a restriction of U to one of its invariant subspaces. It turns out that characterizing the lattice of closed invariant subspaces of a universal operator is equivalent to solve the Invariant Subspace Problem for Hilbert spaces. In this paper, we consider invertible weighted hyperbolic composition operators and we prove the universality of the translations by eigenvalues of such operators, acting on Hardy and weighted Bergman spaces. Some consequences for the Banach space case are also discussed.
Idioma: Inglés
DOI: 10.1016/j.jmaa.2024.129129
Año: 2025
Publicado en: JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 545, 1 (2025), 129129 [13 pp.]
ISSN: 0022-247X

Tipo y forma: Article (Published version)
Área (Departamento): Área Análisis Matemático (Dpto. Matemáticas)

Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.


Exportado de SIDERAL (2025-01-20-14:54:09)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles > Artículos por área > Análisis Matemático



 Record created 2025-01-20, last modified 2025-01-20


Versión publicada:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)