Projective tensor products where every element is norm-attaining
Resumen: In this paper we analyse when every element of attains its projective norm. We prove that this is the case if X is the dual of a subspace of a predual of an space and Y is 1-complemented in its bidual under approximation property assumptions. This result allows us to provide some new examples where X is a Lipschitz-free space. We also prove that the set of norm-attaining elements is dense in if, for instance, and Y is any Banach space, or if X has the metric -property and Y is a dual space with the RNP.
Idioma: Inglés
DOI: 10.1007/s43037-024-00400-7
Año: 2025
Publicado en: Banach Journal of Mathematical Analysis 19, 2 (2025), 20 pp.
ISSN: 2662-2033

Financiación: info:eu-repo/grantAgreement/ES/DGA/E48-23R
Financiación: info:eu-repo/grantAgreement/ES/MICINN-AEI-FEDER/PID2021-122126NB-C31
Financiación: info:eu-repo/grantAgreement/ES/MCINN/PID2022-137294NB-I00
Tipo y forma: Article (Published version)
Área (Departamento): Área Análisis Matemático (Dpto. Matemáticas)

Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.


Exportado de SIDERAL (2025-03-07-09:33:51)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles > Artículos por área > Análisis Matemático



 Record created 2025-03-07, last modified 2025-03-07


Versión publicada:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)