An extension of a theorem by B.H. Neumann on groups with boundedly finite conjugacy classes
Resumen: The source of this paper is a classical theorem by B. H. Neumann on groups whose conjugacy classes are boundedly finite. In a natural way this leads to the study of groups with restrictions on the normal closures of their cyclic subgroups. More concretely, in this paper we study groups G such that the normal closure of every cyclic subgroup
has a divisible Chernikov G-invariant subgroup D of minimax rank r such that gD has at most b conjugates in the factorgroup G/D. We prove that such groups are Chernikov-by-abelian and bound their invariants in terms of r and b only.

Idioma: Inglés
DOI: 10.1007/s00032-012-0172-0
Año: 2012
Publicado en: Milan Journal of Mathematics 80, 1 (2012), 227-241
ISSN: 1424-9286

Factor impacto JCR: 0.467 (2012)
Categ. JCR: MATHEMATICS rank: 194 / 295 = 0.658 (2012) - Q3 - T2
Categ. JCR: MATHEMATICS, APPLIED rank: 197 / 247 = 0.798 (2012) - Q4 - T3

Tipo y forma: Article (Published version)
Área (Departamento): Área Didáctica Matemática (Dpto. Matemáticas)
Área (Departamento): Área Algebra (Dpto. Matemáticas)

Exportado de SIDERAL (2026-01-13-22:08:07)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
articulos > articulos-por-area > didactica_de_la_matematica
articulos > articulos-por-area > algebra



 Notice créée le 2026-01-13, modifiée le 2026-01-13


Versión publicada:
 PDF
Évaluer ce document:

Rate this document:
1
2
3
 
(Pas encore évalué)