Effect of Cryogenic Thermal Stress Cycles on the Performance of Integrated Resistors
Resumen: Cryogenic operation of CMOS circuits is essential for scalable quantum computing and other high-performance applications. Although much research has focused on the behavior of devices at low temperatures, the long-term effects of repeated thermal stress cycles remain largely unexplored. This work investigates the impact of consecutive cooling-heating cycles between 4 K and 280 K on the electrical characteristics of 65 nm CMOS polysilicon resistors with varying sizes and doping types. Using a fully automated cryogenic measurement setup, eight full thermal cycles were applied to three different resistor structures. Resistance vs. temperature (R–T) characteristics were measured in the full temperature range for each cycle. The results reveal the appearance of hysteresis in the curves R–T after thermal cycling, with the most pronounced effects observed in larger devices. In particular, the maximum resistance variation remained below 2 % of the nominal value, a trend that is maintained after repeating the thermal cycle 8 times. These findings suggest that while 65 nm CMOS resistors are suitable for cryogenic electronic systems, care has to be taken when designing high-precision systems depending on the value of resistors such as comparators or data converters.
Idioma: Inglés
DOI: 10.1109/TIM.2026.3655943
Año: 2026
Publicado en: IEEE Transactions on Instrumentation and Measurement (2026), [4 pp.]
ISSN: 0018-9456

Tipo y forma: Article (Published version)
Área (Departamento): Área Física Aplicada (Dpto. Física Aplicada)
Área (Departamento): Área Electrónica (Dpto. Ingeniería Electrón.Com.)


Rights Reserved All rights reserved by journal editor


Exportado de SIDERAL (2026-02-12-20:38:44)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles > Artículos por área > Física Aplicada
Articles > Artículos por área > Electrónica



 Record created 2026-02-12, last modified 2026-02-12


Versión publicada:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)