SU-8 Based Microdevices to Study Self-Induced Chemotaxis in 3D Microenvironments

Ayuso, Jose Maria (Universidad de Zaragoza) ; Monge, Rosa ; Llamazares, Guillermo A. (Universidad de Zaragoza) ; Moreno, Marco ; Agirregabiria, Maria ; Berganzo, Javier ; Doblaré, Manuel (Universidad de Zaragoza) ; Ochoa, Ignacio (Universidad de Zaragoza) ; Fernández, Luis J. (Universidad de Zaragoza)
SU-8 Based Microdevices to Study Self-Induced Chemotaxis in 3D Microenvironments
Resumen: Tissues are complex three-dimensional structures in which cell behavior is frequently guided by chemotactic signals. Although starvation and nutrient restriction induce many different chemotactic processes, the recreation of such conditions in vitro remains difficult when using standard cell culture equipment. Recently, microfluidic techniques have arisen as powerful tools to mimic such physiological conditions. In this context, microfluidic three-dimensional cell culture systems require precise control of cell/hydrogel location because samples need to be placed within a microchamber without obstruction of surrounding elements. In this article, SU-8 is studied as structural material for the fabrication of complex cell culture microdevices due to its good mechanical properties and sensor integration capacity. Moreover, SU-8 physical properties and their effect on a successful design for precise control of hydrogel location within microfluidic devices are studied. In particular, this manuscript presents a SU-8 based microdevice designed to create “self-induced” medium starvation, based on the combination of nutrient restriction and natural cell metabolism. Results show a natural migratory response toward nutrient source, showing how cells adapt to their own microenvironment modifications. The presented results demonstrate the SU-8 potential for microdevice fabrication applied to cell culture.
Idioma: Inglés
DOI: 10.3389/fmats.2015.00037
Año: 2015
Publicado en: Frontiers in Materials 2 (2015), 37
ISSN: 2296-8016

Financiación: info:eu-repo/grantAgreement/ES/MINECO/BES-2012-059940
Financiación: info:eu-repo/grantAgreement/ES/MINECO/DPI2011-28262-C04-01
Tipo y forma: Article (Published version)
Área (Departamento): Area Histología (Dpto. Anatom.Histolog.Humanas)
Área (Departamento): Área Bioquímica y Biolog.Mole. (Dpto. Bioq.Biolog.Mol. Celular)
Área (Departamento): Área Mec.Med.Cont. y Teor.Est. (Dpto. Ingeniería Mecánica)


Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.


Exportado de SIDERAL (2020-03-24-10:01:43)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles



 Record created 2018-10-17, last modified 2020-03-24


Versión publicada:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)