Resumen: In this paper, we extend the concept of absolutely Cesàro boundedness to the fractional case. We construct a weighted shift operator belonging to this class of operators, and we prove that if T is an absolutely Cesàro bounded operator of order α with 0< α <=1, then ‖Tn‖=o(n^α), generalizing the result obtained for α=1. Moreover, if α > 1, then ‖Tn‖=O(n). We apply such results to get stability properties for the Cesàro means of bounded operators. Idioma: Inglés DOI: 10.1016/j.laa.2018.10.002 Año: 2019 Publicado en: LINEAR ALGEBRA AND ITS APPLICATIONS 561 (2019), 253-267 ISSN: 0024-3795 Factor impacto JCR: 0.988 (2019) Categ. JCR: MATHEMATICS rank: 115 / 324 = 0.355 (2019) - Q2 - T2 Categ. JCR: MATHEMATICS, APPLIED rank: 157 / 260 = 0.604 (2019) - Q3 - T2 Factor impacto SCIMAGO: 0.897 - Algebra and Number Theory (Q1) - Discrete Mathematics and Combinatorics (Q1) - Geometry and Topology (Q2) - Numerical Analysis (Q2)