Growth orders and ergodicity for absolutely Cesàro bounded operators
Resumen: In this paper, we extend the concept of absolutely Cesàro boundedness to the fractional case. We construct a weighted shift operator belonging to this class of operators, and we prove that if T is an absolutely Cesàro bounded operator of order α with 0< α <=1, then ‖Tn‖=o(n^α), generalizing the result obtained for α=1. Moreover, if α > 1, then ‖Tn‖=O(n). We apply such results to get stability properties for the Cesàro means of bounded operators.
Idioma: Inglés
DOI: 10.1016/j.laa.2018.10.002
Año: 2019
Publicado en: LINEAR ALGEBRA AND ITS APPLICATIONS 561 (2019), 253-267
ISSN: 0024-3795

Factor impacto JCR: 0.988 (2019)
Categ. JCR: MATHEMATICS rank: 115 / 324 = 0.355 (2019) - Q2 - T2
Categ. JCR: MATHEMATICS, APPLIED rank: 157 / 260 = 0.604 (2019) - Q3 - T2

Factor impacto SCIMAGO: 0.897 - Algebra and Number Theory (Q1) - Discrete Mathematics and Combinatorics (Q1) - Geometry and Topology (Q2) - Numerical Analysis (Q2)

Tipo y forma: Article (PostPrint)
Área (Departamento): Área Análisis Matemático (Dpto. Matemáticas)

Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. You may not use the material for commercial purposes. If you remix, transform, or build upon the material, you may not distribute the modified material.


Exportado de SIDERAL (2020-07-16-08:54:09)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles > Artículos por área > Análisis Matemático



 Record created 2019-10-25, last modified 2020-07-16


Postprint:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)