Growth orders and ergodicity for absolutely Cesàro bounded operators
Resumen: In this paper, we extend the concept of absolutely Cesàro boundedness to the fractional case. We construct a weighted shift operator belonging to this class of operators, and we prove that if T is an absolutely Cesàro bounded operator of order α with 0< α <=1, then ‖Tn‖=o(n^α), generalizing the result obtained for α=1. Moreover, if α > 1, then ‖Tn‖=O(n). We apply such results to get stability properties for the Cesàro means of bounded operators.
Idioma: Inglés
DOI: 10.1016/j.laa.2018.10.002
Año: 2019
Publicado en: LINEAR ALGEBRA AND ITS APPLICATIONS 561 (2019), 253-267
ISSN: 0024-3795

Factor impacto JCR: 0.988 (2019)
Categ. JCR: MATHEMATICS rank: 115 / 324 = 0.355 (2019) - Q2 - T2
Categ. JCR: MATHEMATICS, APPLIED rank: 157 / 260 = 0.604 (2019) - Q3 - T2

Factor impacto SCIMAGO: 0.897 - Algebra and Number Theory (Q1) - Discrete Mathematics and Combinatorics (Q1) - Geometry and Topology (Q2) - Numerical Analysis (Q2)

Tipo y forma: Article (PostPrint)
Área (Departamento): Área Análisis Matemático (Dpto. Matemáticas)
Exportado de SIDERAL (2020-07-16-08:54:09)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
articulos > articulos-por-area > analisis_matematico



 Notice créée le 2019-10-25, modifiée le 2020-07-16


Postprint:
 PDF
Évaluer ce document:

Rate this document:
1
2
3
 
(Pas encore évalué)