On the effect of using collision/reaction cell (CRC) technology in single-particle ICP-mass spectrometry (SP-ICP-MS)
Resumen: In this work, the effects of using collision/reaction cell (CRC) technology in quadrupole-based ICP-MS (ICP-QMS) instrumentation operated in single-particle (SP) mode have been assessed. The influence of (i) various CRC gases, (ii) gas flow rates, (iii) nanoparticle (NP) sizes and (iv) NP types was evaluated using Ag, Au and Pt NPs with both a traditional ICP-QMS instrument and a tandem ICP-mass spectrometer. It has been shown that using CRC technology brings about a significant increase in the NP signal peak width (from 0.5 up to 6¿ms). This effect is more prominent for a heavier gas (e.g., NH3) than for a lighter one (e.g., H2 or He). At a higher gas flow rate and/or for larger particle sizes >100¿nm), the NP signal duration was prolonged to a larger extent. This effect of using CRC technology has been further demonstrated by characterizing custom-made 50 and 200¿nm Fe3O4 NPs (originally strongly affected by the occurrence of spectral overlap) using different CRC approaches (H2 on-mass and NH3 mass-shift). The use of NH3 (monitoring of Fe as the Fe(NH3)2+ reaction product ion at m/z¿=¿90 amu) induces a significant peak broadening compared to that observed when using H2 (6.10¿±¿1.60 vs. 0.94¿±¿0.49¿ms). This extension of transit time can most likely be attributed to the collisions/interactions of the ion cloud generated by a single NP event with the CRC gas and it even precludes 50¿nm Fe3O4 NPs to be detected when using the NH3 mass-shift approach. Based on these results, the influence of a longer peak width on the accuracy of SP-ICP-MS measurement data (NP size, particle number density and mass concentration) must be taken into account when using CRC technology as a means to overcome spectral overlap. To mitigate the potential detrimental effect of using CRC technology in the characterization of NPs via SP-ICP-MS(/MS), the use of light gases and low gas flow rates is recommended.
Idioma: Inglés
DOI: 10.1016/j.aca.2019.05.077
Año: 2019
Publicado en: Analytica Chimica Acta 1077 (2019), 95-106
ISSN: 0003-2670

Factor impacto JCR: 5.977 (2019)
Categ. JCR: CHEMISTRY, ANALYTICAL rank: 10 / 86 = 0.116 (2019) - Q1 - T1
Factor impacto SCIMAGO: 1.414 - Analytical Chemistry (Q1) - Spectroscopy (Q1) - Environmental Chemistry (Q1) - Biochemistry (Q1)

Financiación: info:eu-repo/grantAgreement/ES/MINECO/CTQ2015-64684-P
Financiación: info:eu-repo/grantAgreement/ES/MINECO-FEDER/PGC2018-093753-B-I00
Tipo y forma: Artículo (PostPrint)
Área (Departamento): Área Química Analítica (Dpto. Química Analítica)

Creative Commons Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace. No puede utilizar el material para una finalidad comercial. Si remezcla, transforma o crea a partir del material, no puede difundir el material modificado.


Exportado de SIDERAL (2023-11-27-09:46:37)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Artículos



 Registro creado el 2020-06-09, última modificación el 2023-11-27


Postprint:
 PDF
Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)