Further generalizations of the parallelogram law
Resumen: In a recent work of Alessandro Fonda, a generalization of the parallelogram law in any dimension N >= 2 was given by considering the ratio of the quadratic mean of the measures of the (N - 1)-dimensional diagonals to the quadratic mean of the measures of the faces of a parallelotope. In this paper, we provide a further generalization considering not only (N - 1)-dimensional diagonals and faces, but the k-dimensional ones for every 1 <= k <= N - 1.
Idioma: Inglés
Año: 2020
Publicado en: CONTRIBUTIONS TO DISCRETE MATHEMATICS 15, 2 (2020), 153-158
ISSN: 1715-0868

Originalmente disponible en: Texto completo de la revista

Factor impacto JCR: 0.743 (2020)
Categ. JCR: MATHEMATICS rank: 226 / 330 = 0.685 (2020) - Q3 - T3
Factor impacto SCIMAGO: 0.229 - Discrete Mathematics and Combinatorics (Q4)

Tipo y forma: Article (Published version)

Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.


Exportado de SIDERAL (2021-09-02-10:09:04)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles



 Record created 2020-09-30, last modified 2021-09-02


Versión publicada:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)