Further generalizations of the parallelogram law
Resumen: In a recent work of Alessandro Fonda, a generalization of the parallelogram law in any dimension N >= 2 was given by considering the ratio of the quadratic mean of the measures of the (N - 1)-dimensional diagonals to the quadratic mean of the measures of the faces of a parallelotope. In this paper, we provide a further generalization considering not only (N - 1)-dimensional diagonals and faces, but the k-dimensional ones for every 1 <= k <= N - 1.
Idioma: Inglés
Año: 2020
Publicado en: CONTRIBUTIONS TO DISCRETE MATHEMATICS 15, 2 (2020), 153-158
ISSN: 1715-0868

Originalmente disponible en: Texto completo de la revista

Factor impacto JCR: 0.743 (2020)
Categ. JCR: MATHEMATICS rank: 226 / 330 = 0.685 (2020) - Q3 - T3
Factor impacto SCIMAGO: 0.229 - Discrete Mathematics and Combinatorics (Q4)

Tipo y forma: Artículo (Versión definitiva)

Creative Commons Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace.


Exportado de SIDERAL (2021-09-02-10:09:04)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Artículos



 Registro creado el 2020-09-30, última modificación el 2021-09-02


Versión publicada:
 PDF
Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)